※ PTMD 1.0 database Online Browse Options
※ PTM introduction in Palmitoylation modification

Browse result for Palmitoylation
• There are 6 unqiue proteins containing the PTMs that associate with disease.
S-palmitoylation (1) Palmitoylation is the covalent attachment of fatty acids, such as palmitic acid, to cysteine and less frequently to serine and threonine residues of proteins, which are typically membrane proteins. The precise function of palmitoylation depends on the particular protein being considered. Palmitoylation enhances the hydrophobicity of proteins and contributes to their membrane association. Palmitoylation also appears to play a significant role in subcellular trafficking of proteins between membrane compartments, as well as in modulating protein-protein interactions. In contrast to prenylation and myristoylation, palmitoylation is usually reversible (because the bond between palmitic acid and protein is often a thioester bond). The reverse reaction is catalysed by palmitoyl protein thioesterases. Because palmitoylation is a dynamic, post-translational process, it is believed to be employed by the cell to alter the subcellular localization, protein-protein interactions, or binding capacities of a protein. Reference Wiki: S-palmitoylation | S-acylation (1) In chemistry, acylation (rarely, but more formally: alkanoylation) is the process of adding an acyl group to a compound. The compound providing the acyl group is called the acylating agent. Because they form a strong electrophile when treated with some metal catalysts, acyl halides are commonly used as acylating agents. For example, Friedel-Crafts acylation uses acetyl chloride (ethanoyl chloride), CH3COCl, as the agent and aluminum chloride (AlCl3) as a catalyst to add an ethanoyl (acetyl) group to benzene. Reference Wiki: S-acylation | Palmitoylation (4) Palmitoylation is the covalent attachment of fatty acids, such as palmitic acid, to cysteine and less frequently to serine and threonine residues of proteins, which are typically membrane proteins.[1] The precise function of palmitoylation depends on the particular protein being considered. Palmitoylation enhances the hydrophobicity of proteins and contributes to their membrane association. Palmitoylation also appears to play a significant role in subcellular trafficking of proteins between membrane compartments,[2] as well as in modulating protein-protein interactions.[3] In contrast to prenylation and myristoylation, palmitoylation is usually reversible (because the bond between palmitic acid and protein is often a thioester bond). The reverse reaction is catalysed by palmitoyl protein thioesterases. Because palmitoylation is a dynamic, post-translational process, it is believed to be employed by the cell to alter the subcellular localization, protein-protein interactions, or binding capacities of a protein. Reference Wiki: Palmitoylation |
※ PTM introduction in Palmitoylation modification